PHOTOCONVERSION OF 2,2'-DINITRODIPHENYLMETHANES TO 3-(2-NITROPHENYL) 2,1-BENZISOXAZOLES

C.P. Joshua and P.K. Ramdas

Department of Chemistry, University of Kerala, Trivandrum, India - 695001.

(Received in UK 23 October 1974; accepted for publication 30 October 1974)

In a recent communication¹ we have reported the photoconversion of 2,2'-dinitrodiphenylmethanes ($\underline{1}$) in isopropanol to 11-oxo-11H-dibenzo [c,f][,2] diazepine-5-oxides ($\underline{7}$) and acridones ($\underline{8}$). The reaction was envisaged to proceed via the intermediate $\underline{6}$ formed by two successive oxygen insertion reactions involving both nitro groups in $\underline{1}$. Here we wish to report an interesting observation made by photolysing $\underline{1}$ in presence of a little H_2SO_4 in the reaction medium. The irradiation of $\underline{1}$ in ethanolic H_2SO_4 led to the preferential cyclisation of one of the nitro groups into the methylene group resulting in the formation of 3-(2-nitrophenyl)2,1-benzisoxazoles ($\underline{4}$) (45-50% yield, corrected to recovered $\underline{1}$), instead of the coupling between nitrogens which occurs in the absence of H_2SO_4 .

In a typical run a solution of 1.5g of $\frac{1}{2}$ in 950ml of ethanol containing 2 ml of 98% H₂SO₄ was irradiated for 20h using a Philips HPK 125W high pressure mercury-quartz lamp. The photolysed solution after chromatography on an alumina column afforeded in addition to the unchanged $\frac{1}{2}$ (30%), $\frac{4}{2}$ (35%)[m.p.117-118°; M⁺224; λ_{max} (EtOH), 323 nm; ν_{-NO_2} (KBr) 1540, 1360 cm⁻¹; n.m.r, a complex multiplet of aromatic protons, τ 1.7-3.2], the N-oxide $\underline{7}_{\underline{3}}$ (6%), acridone $\underline{8}_{\underline{3}}$ (4%) and 2,2'-dinitrobenzophenone (3%). The structure of $\underline{4}_{\underline{3}}$ was confirmed by an alternate synthesis from 2,2'-dinitrodiphenyl carbinol ($\underline{9}_{\underline{3}}$)² by treating with conc H₂SO₄, a procedure recently adopted for the preparation of 3-phenyl-2,1-benzisoxazole³. The yield of $\underline{4}_{\underline{3}}$ obtained compared to the photochemical method was very low.

The generality of this interesting photoreaction was confirmed by similar conversions of the dichloro and dibromo analogs, $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$ to $\underline{4}\underline{b}$ (m.p.189°) and $\underline{4}\underline{c}$ (m.p.207°) in <u>ca</u> 45% yields. $\underline{4}\underline{b}$ and $\underline{4}\underline{c}$ showed closely similar spectral data to those of $\underline{4}\underline{a}$. The essential role of the acid in this photocyclisation was confirmed by the observation that the irradiation of $\underline{1}$ in 95% ethanol does not lead to the

formation of $\frac{4}{2}$ and proceeds exactly similar to the photolysis of $\frac{1}{2}$ in isopropanol. A plausible mechanism to account our observations is outlined below.

During the photolyses of $\underline{1}$ in isopropanol or in ethanolic H_2SO_4 the abstraction of benzylic hydrogen by the electronically excited nitrogroup occurs first to form the biradical $\underline{2}$ which cyclises to the intermediate $\underline{3}$. $\underline{3}$ in presence of H_2SO_4 undergoes mainly dehydration to $\underline{4}$ (path B) and in the absence of H_2SO_4 completely rearranges (path A)⁴ to the nitroso intermediate $\underline{5}$ which readily undergoes one more oxygen insertion process (path A) resulting in $\underline{6}$. $\underline{6}$ accounts for the formation of $\underline{7}$ and $\underline{8}$.

Our observation, in addition to its mechanistic interest, provides a novel and easy method for the synthesis of 3-(2-nitrophenyl)2,1-benzisoxazoles. Further investigations to extend the method as a general route to 2,1-benzisoxazoles and related compounds are now in progress.

References:

- 1. C.P. Joshua and P.K. Ramdas, Synthesis (in press).
- 2. 9a was prepared by the NaBH reduction of 2,2'-dinitrobenzophenone.
- A. Silberg and Z.Frenkel, <u>Rev.Roum.Chim.</u>, 10, 1035 (1965);<u>Chem.Abstr</u>.,64, 12641 (1966).
- 4. D. Dopp, <u>Tetrahedron Letters</u>, 2757 (1971).